Контролно 1 - решение
Това са примерни решения на задачите от контролното. В някои случаи има и по-оптимално, но дълги решения.
В клас
Задача 1
#include <stdio.h>
unsigned int count_10(short data) {
unsigned int count = 0;
// Iterate all bits
while(data > 0) {
// Extract the last 2 bits and check if they match the pattern
// 1010 1010 & 0000 0011 == 0000 0010
if((data & 0b11) == 0b10) count++;
// if((data & 3) == 2) count++; // 0b11 == 3, 0b10 == 2
// Bitshift to the right once
data >>= 1;
}
return count;
}
int main() {
printf("11 => %d\n", count_10(11));
printf("3 => %d\n", count_10(3));
printf("21601 => %d\n", count_10(21601));
return 0;
}
Задача 2
#include <stdio.h>
#include <string.h>
// Helper function to split the code
int find_most_common(int *array, unsigned int size) {
// Helper variables to track the most common value
int most_common = array[0];
int most_occurances = 1;
// size - most_occurances because if less than most_occurances items remain
// then none of them can beat the current most common
for(int i = 0; i < size - most_occurances; i++) {
int curr_item = array[i];
int curr_occurances = 1;
// Search all reamaining items to the right
for(int j = i + 1; j < size; j++) {
if(array[j] == curr_item) curr_occurances++;
}
// Update the most common value if we found a new one
if(curr_occurances > most_occurances) {
most_common = curr_item;
most_occurances = curr_occurances;
}
}
return most_common;
}
void sort_most_common(int *array, unsigned int size) {
int most_common = find_most_common(array, size);
/*
// Option 1 - use a front-to-back index to iterate all items and a back-to-front
// index to track the last position that doesn't have a most_common value
// This DOES NOT preserve the order of items
int bf = size - 1;
// In case the array ends with one or more most_common find where they end
while(array[bf] == most_common) bf--;
// Iterate all elements except the list of most_common at the end
for(int fb = 0; fb < bf; fb++) {
if(array[fb] == most_common) {
// Swap
int c = array[fb];
array[fb] = array[bf];
array[bf] = c;
// Move the back-to-front index to the new last free position
bf--;
}
}*/
// Option 2 - use a temporary lsit of items to help store the correct order
// This WILL preserve the order of items
int buffer[size];
int buffer_index = 0;
for(int i = 0; i < size; i++) {
// Move all items that are not most_common to the buffer in the same order as they appear
if(array[i] != most_common) {
buffer[buffer_index] = array[i];
buffer_index++;
}
}
// Fill all remaining positions with most_common
for(int i = buffer_index; i < size; i++) {
buffer[i] = most_common;
}
// Copy back to the original array
memcpy(array, buffer, sizeof(int) * size);
}
void print_array(int *array, unsigned int size) {
for(int i = 0; i < size; i++)
printf("%d ", array[i]);
puts("");
}
int main() {
int arr1[] = {1, 3, 5, 3, 7};
int arr2[] = {3, 4, 2, 4, 3};
sort_most_common(arr1, 5);
sort_most_common(arr2, 5);
print_array(arr1, 5);
print_array(arr2, 5);
return 0;
}
Задача 3
#include <stdio.h>
#include <stdlib.h>
struct node_t {
int value;
struct node_t *next, *prev;
struct node_t *s_next, *s_prev;
};
struct node_t* init_node(int value) {
struct node_t *new_node = malloc(sizeof(struct node_t));
new_node->value = value;
new_node->next = new_node->prev = NULL;
new_node->s_next = new_node->s_prev = NULL;
return new_node;
}
// Insert a new node.
// Point next and prev as a new head.
// Point s_next and s_prev in ascending order from left to right.
struct node_t* add_node(struct node_t *list, int value) {
struct node_t *new_node = init_node(value);
// The list is empty so just return the node
if(list == NULL) return new_node;
// Insert the new node as the new head
list->prev = new_node;
new_node->next = list;
// list can be anywhere in the sorted list. Find the correct place to put the new item
struct node_t *curr = list;
if(curr->value < value) {
// Stop when we reach the end of the list
// OR the new value is between curr and curr->next
while(curr->s_next != NULL && curr->s_next->value < value)
curr = curr->s_next;
// Insert between curr and curr->next
new_node->s_next = curr->s_next;
new_node->s_prev = curr;
if(curr->s_next != NULL)
curr->s_next->s_prev = new_node;
curr->s_next = new_node;
} else {
// Stop when we reach the start of the list
// OR the new value is between curr and curr->prev
while(curr->s_prev != NULL && curr->s_prev->value > value)
curr = curr->s_prev;
// Insert between curr->prev and curr
new_node->s_next = curr;
new_node->s_prev = curr->s_prev;
if(curr->s_prev != NULL)
curr->s_prev->s_next = new_node;
curr->s_prev = new_node;
}
return new_node;
}
void print_as_added(struct node_t *list) {
struct node_t *curr = list;
while(curr != NULL) {
printf("%d ", curr->value);
curr = curr->next;
}
puts("");
}
void print_as_sorted(struct node_t *list) {
struct node_t *curr = list;
// We don't store the sorted head so we need to find it
while(curr->s_prev != NULL)
curr = curr->s_prev;
while(curr != NULL) {
printf("%d ", curr->value);
curr = curr->s_next;
}
puts("");
}
int main() {
struct node_t *list = add_node(NULL, 5);
list = add_node(list, 1);
list = add_node(list, 8);
list = add_node(list, 4);
list = add_node(list, 7);
print_as_added(list);
print_as_sorted(list);
return 0;
}