#include <stdio.h>
#include <stdlib.h>
struct node_t {
int value;
struct node_t* left;
struct node_t* right;
};
void insert(struct node_t* tree, int value) {
struct node_t* new_node =
malloc(sizeof(struct node_t));
new_node->value = value;
new_node->left = NULL;
new_node->right = NULL;
struct node_t** branch;
if(value > tree->value) {
branch = &tree->right;
} else {
branch = &tree->left;
}
if(*branch == NULL) {
*branch = new_node;
} else {
insert(*branch, value);
}
}
int tree_contains(struct node_t* root, int value, int level) {
printf("Search for %d in [%d] %d \n", value, level, root->value);
if(root->value == value) {
return 1;
}
if(root->left != NULL && value < root->value ) {
return tree_contains(root->left, value, level + 1);
}
if(root->right != NULL && value > root->value ) {
return tree_contains(root->right, value, level + 1);
}
return 0;
}
//
// Helper list structure
//
struct list_node_t {
struct node_t* node;
struct list_node_t* next;
};
struct list_node_t* gather_nodes(struct node_t* root) {
if(root == NULL) return NULL;
struct list_node_t* node = malloc(sizeof(struct list_node_t));
node->node = root;
node->next = gather_nodes(root->left);
struct list_node_t* last = node;
while(last->next != NULL) last = last->next;
last->next = gather_nodes(root->right);
return node;
}
void sort_list(struct list_node_t* head) {
struct list_node_t* curr = head;
while(curr->next != NULL) {
struct list_node_t* other = curr->next;
while(other != NULL) {
if(curr->node->value > other->node->value) {
struct node_t* temp = curr->node;
curr->node = other->node;
other->node = temp;
}
other = other->next;
}
curr = curr->next;
}
}
int get_list_length(struct list_node_t* head) {
int length = 0;
struct list_node_t* last_node = head;
while(last_node != NULL) {
length++;
last_node = last_node->next;
}
return length;
}
struct list_node_t* get_list_at(struct list_node_t* head, int pos) {
int index = 0;
struct list_node_t* last_node = head;
while(index != pos) {
index++;
last_node = last_node->next;
}
return last_node;
}
//
// Balance the tree
//
struct node_t* build_tree_from_list(struct list_node_t* list) {
int list_length = get_list_length(list);
int mid_index = list_length / 2;
struct list_node_t* mid = get_list_at(list, mid_index);
struct node_t* new_root = mid->node;
if(mid_index > 0) {
struct list_node_t* left_half = list; // left half of the list [start, mid)
struct list_node_t* curr = left_half;
while(curr->next != mid) {
curr = curr->next;
}
curr->next = NULL; // "cut off" the left half
new_root->left = build_tree_from_list(left_half);
} else {
new_root->left = NULL;
}
if(mid_index + 1 < list_length) {
struct list_node_t* right_half = mid->next; // right half of the list (mid, end]
mid->next = NULL; // "cut off" the right half
new_root->right = build_tree_from_list(right_half);
} else {
new_root->right = NULL;
}
return new_root;
}
struct node_t* balance_tree(struct node_t* root) {
struct list_node_t* nodes = gather_nodes(root);
sort_list(nodes);
return build_tree_from_list(nodes);
}
//
// Print
//
void print_tree(struct node_t* root, int level, char branch) {
if(root == NULL) return;
printf("[%c %d] %d ", branch, level, root->value);
if(root->left != NULL || root->right != NULL) {
print_tree(root->left, level + 1, 'L');
print_tree(root->right, level + 1, 'R');
}
}
// Return 1 if the tree has more levels below the target level. Return 0 if it does not
int print_tree_bfs_recursive(struct node_t* root, int target_level, int curr_level) {
if(root == NULL) {
printf("[%d] - ", curr_level);
return 0;
}
// If the current node is at the level we want - print it and return
if(curr_level == target_level) {
printf("[%d] %d ", curr_level, root->value);
// Are there more levels below the current one?
return root->left != NULL || root->right != NULL;
}
// Else call recursively for the child nodes
int has_more_left = print_tree_bfs_recursive(root->left, target_level, curr_level + 1);
int has_more_right = print_tree_bfs_recursive(root->right, target_level, curr_level + 1);
// Finished iterating the child subtrees. Are there more levels below the target level?
return has_more_left || has_more_right;
}
// Helper function to push nodes in the back of a list
struct list_node_t* push_back_in_list(struct list_node_t* list, struct node_t* node) {
struct list_node_t* new_list_node = malloc(sizeof(struct list_node_t));
new_list_node->node = node;
if(list == NULL) return new_list_node;
struct list_node_t* curr = list;
while(curr->next != NULL) curr = curr->next;
curr->next = new_list_node;
return list;
}
// Use a list of nodes as a queue - pop from the front and push in the back
// node_number instead of curr_level because with this implementation
// we don't know about levels
void print_tree_bfs_recursive_with_queue(struct node_t* root, struct list_node_t* queue, int node_number) {
if(root == NULL) {
printf("[%d] - ", node_number);
return;
}
printf("[%d] %d ", node_number, root->value);
// Add the child nodes at the end of the queue
queue = push_back_in_list(queue, root->left);
queue = push_back_in_list(queue, root->right);
// If the queue is NULL, i.e. empty, then there are no more nodes to iterate over
if(queue != NULL) {
// Take the first element in the queue. It is either the next one in the urrnet level
// or the first one in the next level
struct node_t* next = queue->node;
// "pop" the first element in the queue - simply reassign the pointer to the second element
queue = queue->next;
print_tree_bfs_recursive_with_queue(next, queue, node_number + 1);
}
}
// BFS but iterative instead of recursive
void print_tree_bfs_iterative(struct node_t* root) {
if(root == NULL) return;
// Start a queue with only the root node
struct list_node_t* queue = push_back_in_list(NULL, root);
int curr_level = 0;
// When the queue runs out of nodes then we're done iterating
while(queue != NULL) {
// Start a second list as a helper
struct list_node_t* new_list = NULL;
// Iterate over all elements in the current queue
// i.e. all elements in the current level
while(queue != NULL) {
// Take the first element in the queue
struct node_t* curr = queue->node;
if(curr == NULL) {
// It's empty
printf("[%d] - ", curr_level);
} else {
// If it has children - add them to the queue for the next level
if(curr->left != NULL || curr->right != NULL) {
new_list = push_back_in_list(new_list, curr->left);
new_list = push_back_in_list(new_list, curr->right);
}
printf("[%d] %d ", curr_level, curr->value);
}
// Go to the next element in the queue
queue = queue->next;
}
// Switch the queue for the new one for the next level
queue = new_list;
curr_level++;
puts("");
}
}
int main() {
struct node_t n1 = {8, NULL, NULL};
insert(&n1, 13);
insert(&n1, 5);
insert(&n1, 2);
insert(&n1, 7);
insert(&n1, 3);
puts("Initial tree:");
print_tree(&n1, 0, ' ');
struct node_t* balanced_tree = balance_tree(&n1);
puts("\n\nTree after balancing:");
puts("Print with DFS");
print_tree(balanced_tree, 0, ' ');
puts("\n");
puts("Print with BFS recursive");
int level = 0;
while(print_tree_bfs_recursive(balanced_tree, level++, 0)) {
puts("");
}
puts("\n");
puts("Print with BFS recursive with a queue");
print_tree_bfs_recursive_with_queue(balanced_tree, NULL, 0);
puts("\n");
puts("Print with BFS iterative with queue");
print_tree_bfs_iterative(balanced_tree);
puts("");
return 0;
}